Package: multifear 0.1.3

multifear: Multiverse Analyses for Conditioning Data

A suite of functions for performing analyses, based on a multiverse approach, for conditioning data. Specifically, given the appropriate data, the functions are able to perform t-tests, analyses of variance, and mixed models for the provided data and return summary statistics and plots. The function is also able to return for all those tests p-values, confidence intervals, and Bayes factors. The methods are described in Lonsdorf, Gerlicher, Klingelhofer-Jens, & Krypotos (2022) <doi:10.1016/j.brat.2022.104072>.

Authors:Angelos-Miltiadis Krypotos [aut, cre, cph]

multifear_0.1.3.tar.gz
multifear_0.1.3.zip(r-4.5)multifear_0.1.3.zip(r-4.4)multifear_0.1.3.zip(r-4.3)
multifear_0.1.3.tgz(r-4.4-any)multifear_0.1.3.tgz(r-4.3-any)
multifear_0.1.3.tar.gz(r-4.5-noble)multifear_0.1.3.tar.gz(r-4.4-noble)
multifear_0.1.3.tgz(r-4.4-emscripten)multifear_0.1.3.tgz(r-4.3-emscripten)
multifear.pdf |multifear.html
multifear/json (API)
NEWS

# Install 'multifear' in R:
install.packages('multifear', repos = c('https://angelospsy.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/angelospsy/multifear/issues

Datasets:
  • example_data - Simulated data sets of skin conductance responses

On CRAN:

conditioningmultiverse

4.00 score 2 stars 7 scripts 173 downloads 14 exports 82 dependencies

Last updated 1 years agofrom:84adfe50dc. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-winOKOct 30 2024
R-4.5-linuxOKOct 30 2024
R-4.4-winOKOct 30 2024
R-4.4-macOKOct 30 2024
R-4.3-winOKOct 30 2024
R-4.3-macOKOct 30 2024

Exports:bt_test_mfchop_cschop_csscombine_csexclusion_criteriaforestplot_mfinference_csinference_plotmixed_mfmultiverse_csrm_anova_mfrm_banova_mft_test_mfuniverse_cs

Dependencies:abindbackportsBayesFactorbayestestRbootbootstrapbroomcarcarDatacheckmateclicodacolorspacecontfraccowplotcpp11datawizardDerivdeSolvedoBydplyreffectsizeeffsizeellipticescezfansifarverforestplotFormulagenericsggplot2gluegtablehypergeoinsightisobandlabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellmvtnormnlmenloptrnnetnumDerivparameterspbapplypbkrtestperformancepillarpkgconfigplyrpurrrquantregR6RColorBrewerRcppRcppEigenreshape2rlangscalesSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr

Explaining how the multifear package works

Rendered frominternals.Rmdusingknitr::rmarkdownon Oct 30 2024.

Last update: 2021-09-23
Started: 2021-09-22

Readme and manuals

Help Manual

Help pageTopics
bt_test_mfbt_test_mf
chop_cschop_cs
chop_csschop_css
combine_cscombine_cs
Simulated data sets of skin conductance responsesexample_data
exclusion_criteriaexclusion_criteria
forestplot_mfforestplot_mf
inference_csinference_cs
inference_plotinference_plot
mixed_mfmixed_mf
multiverse_csmultiverse_cs
rm_anova_mfrm_anova_mf
rm_banova_mfrm_banova_mf
t_test_mft_test_mf
universe_csuniverse_cs